Global Geothermal Development Plan Roundtable The Hague, ND November, 2013

Geothermal Energy in Chile

Gobierno de Chile

Carlos Barría
Head of Renewable Energy Division
Ministry of Energy
Government of Chile

Chilean Energy Sector Macroeconomic Overview

- Last 30 years, the Chilean economy has had exceptional performances, and became a member of the OECD in 2010.
- Up to 2013, Chile has signed free trade and tax agreements with over 60 and 25 countries, respectively.
- Poverty was reduced from 50% in 1975 to 11% in 2012.
- Public debt was controlled and systematically reduced.
- In October 2012, the Chilean government issued US\$
 1,500 million of debt in bonds at the best conditions an
 emerging economy has ever achieved:
 - ➤ 10 year bond was issued at a record 2.38% annual rate.
 - ➤ 30 year bond was issued at 3.71% annual rate.

GDP (PPP per capita US\$)

Foreign Direct Investment, (US\$ million)

CAGR: Compound Annual Growth Rate

Chilean Energy Sector Energy Policy

- The basic principles of the present energy policy were defined in Chile in the early eighties.
- Objective: meeting energy demand at the least cost through the operation of competitive (private) energy markets, with a subsidiary role of the State.
- The concepts of diversification and reliability of supply were fostered in 2005 following the natural gas supply curtailments that Argentina started to apply in 2004.

Electricity Market

Generation

- No regulated prices
- Market competition
- Energy traders
- Economic optimum
- Centralized dispatch
- PPAs

Transmission

- Regulated prices
- Natural monopoly
- Open Access
- Expansion through bidding processes

Distribution

- Regulated prices
- Natural monopoly
- Open Access
- Control and standards

Chilean Electric System

B.----

Northern Interconnected System (SING)

Installed Capacity: 3.8 GW
Peak Demand (2012): 2.2 GW

100% Thermal:

49% Coal

42% natural gas

9% Oil

Demand: 85% Mining Industry

Aysén

-Installed Capacity 50 MW

Magallanes

-Installed Capacity 100 MW

Central Interconnected System (SIC)

Installed Capacity: 13.5 GW Peak Demand (2012): 7.2 GW

53% Thermal 42% Hydro 5% Renewable

74% of the national demand92% of population76% of PIB

Electricity generation by fuel - 2012

Renewable Energy Opportunities

Chile possesses a unique combination of quality and diversity in its renewable energy potential:

- > The Atacama desert receives more annual solar radiation than any other place on earth with a clearest sky.
- > Chile has excellent areas for wind energy development.
- > Chile is located in a region of the world that has intense seismic and volcanic activity known as the "ring of fire".
- ➤ Chile's coast stretches 2,653 miles along the pacific, making it a prime candidate for marine energy.
- Chile has the potential to develop large amount of small hydropower from the central to southern regions.
- > Rich in bioenergy waste from farming and forestry.

Renewable Energy Potential

Resource	Gross Potential (GW)
Small hydro	23
Bioenergy	10
Wind	40
Geothermal	16
Solar	228
Marine	164
Total	481

Source: CER

Renewable Energy Today Main data

Installed Capacity aggregate per year (MW)						
Technology	Accum. up to 2010	2011	2012	2013	2011- 2013	Total
Biomass	195	53	144	51	247	442
Wind	170	34		97	132	302
Small hydro	226	31	19	47	97	323
Solar			3	3	6	6
Total	591	118	166	198	481	1,072

Technology	Operation (MW)	Under construction (MW)	Environment assessment approved (MW)	Under environment assessment (MW)	
Biomass	442	10	106	26	
Wind power	302	490	3,585	1,537	
Mini-Hydro	323	76	268	139	
Solar	5,7	175	4,860	2,052	
Geothermal			120		
Total	1,072	751	8,939	3,754	

Source: CER (sep 2013)

New Renewable target Law 20.698, 2013

- In 2008, Chile promoted the increase of renewable energy share in the energy market through a renewable portfolio standard, to reach 10% by 2024.
- This law excludes hydropower plants larger than 20 MW.

- Recently, in October 2013, the new Law N°20.698, requires that 20% of the energy of new energy contracts comes from non-conventional renewable energy (NCRE) sources by 2025.
- In addition, the law creates a new bidding mechanism for new renewable energy projects, where they can get a stable price for 10 years according to the offer made, with a price cap.
- The new law will require by 2025, approximately 22,700 GWh roughly equivalent to 6,500 MW of renewable projects.

Geothermal energy in Chile

- Chile is one of the largest under-developed geothermal countries in the world.
- The geothermal systems in Chile are associated with volcanos.
- Over 15 percent of the world's active and dormant volcanoes are in Chile, forming an almost continuous line about 4,000 km long. As a result, over 300 geothermal areas have been identified throughout the country.
- The geothermal-resource potential of Chile may reach 16,000 MWe, according to preliminary estimates.

Geothermal energy in Chile - Regulation

- Law No. 19,657 on Geothermal Energy Concessions, published on January, 2000; governs the granting of permits or concessions, by the government to geothermal developers.
- Rules of procedure for the implementation of Law, contained in Decree N° 32 2004 (by-law).
- In March 2013, a new regulation was approved (Decree N°114 2013), to streamline the concession process for geothermal projects and provide developers with long-term certainty over development rights.

Geothermal energy concessions

- **1. Exploration:** Gives the developer the right to carry out exploratory work to determine geothermal potential.
 - Duration: 2 years extendable for 2 more.
 - Maximum area: 100,000 ha.

2. Exploitation: Awards the developer the right to carry out all the activities required for a geothermal energy generation plant, including drilling, construction, commissioning and operation of an extraction system; the production and processing of geothermal fluids in electrical or thermal energy.

It confers the right to utilise the geothermal energy that exists within its boundaries.

- Duration: indefinite.
- Maximum area: 20,000 ha.

Geothermal energy concessions

Status	Quantity	Hectares	Commitment US\$
Exploration Concessions	79	3 million	380 million
Exploitation Concessions	7	38.000	1160 million

EXPLORATION CONCESSIONS Lifetime & Exploration wells drilled

Geothermal concessions by area

3 million hectares in exploration stage

Geothermal exploration concessions by company

Geothermal main projects Cerro Pabellón (Apacheta concession), ENEL GP

- Environmental approval.
- 2 production wells (1800m, 245° C) + 2 injected wells + 1 slim hole (700m, 210° C)
- Estimated capacity: 50 MW (2018)

Source: Enel Green Power

Geothermal main projects

Curacautín (San Gregorio concession), MRP Chile

• Environmental approval.

2 production wells drilled (2500m, 290° C) + 4 slim hole (1100m, 300° C).

Estimated capacity: 70 MW (2018)

Geothermal main projects

Energia Andina (Origin Energy + Antofagasta

Minerals)

Drilling Exploration	n
1) Tinguiririca	1 Gradient 813 m core slim Hole (240 °C steam)
2) Pampa Lirima	4 Gradient conventional slim holes 300 m 1 Core Slim Hole 1,500 m
3) Colpitas4) Juncalito5) Puntas Negras	1 conventional slim hole 1,007 m Drilling conventional slim hole Drilling conventional slim hole

Source: Energía Andina

COLPITAS

PUCHULDIZA
PAMPA LIRIMA

PANIRE

JUNCALITO

BANOS DEL TORO

TINGUIRIRICA

CHOSHUENCO

LA PACANA PUNTAS NEGRA

International Financing and Cooperation

Clean Technology Fund – Geothermal Risk Mitigation Program (MiRiG)

(https://www.climateinvestmentfunds.org/cifnet/country/chile)

Table 5: Chile Revised CTF Financing Plan (2013) (USD million)

Financing source	Component I (CSPP)	Component II (LSPVP)	Component III (RESSEE)	Component IV (RESSEE Prep Grant)	Component V (MiRiG)	TOTAL
CTF loans and grants	67	50	49	1	33	200
GoC	20	0	20	0	14.5	54.5
IDB loans	125	50	50	0	50	275
IDB's Canadian Fund Ioan	30	0	0	0	0	30
IBRD grants	0	0	0	0	0.5	0.5
IDB grants	1	0	0	0	0	1
GEF	0	0.6	2.8	0	0	3.4
IFC loans	0	50	50	0	0	100
Bilaterals (KfW & LAIF)	148.6	295	0	0	0	443.6
Other private sector	109.4	274.4	250	0	200	833.8
TOTAL	501	720	421.8	1	298	1,941.8

Geothermal Challenges in Chile

- The high altitudes and arid environment of the north create logistical dificulties for the location of camps and the extraction of industrial sites.
- On the other extreme, the glacial morphology of the south complicates access and there is also a limited window of time when work can be carried out.
- High exploration cost, in Chile these costs become even more expensive given the absence –at this moment- of a consolidated geothermal industry.

Investment cost per unit 5,100 – 6,000 US\$/kW

Geothermal Challenges in Chile

- Companies need to find big resources that can justify long transmission lines.
- Access to the electricity markets (PPAs).
- Geothermal risk mitigation instruments.
- Geothermal security regulations for drilling.
 - ➤ Technical colaboration from countries and institutions with the experience.
- Capacity building and communications on geothermal energy.
 - > To the community.
 - > To the public services involved in the environmental evaluation.

Global Geothermal Development Plan Roundtable The Hague, Holland November, 2013

Ministry of Energy
http://www.minenergia.cl/

Gobierno de Chile

Carlos Barría cbarria@minenergia.cl